'NASA TECHNICAL

» oo W

REPORT

Ly
o
N N6O-2104
- .9
] !
[-"1 ! (ACCESSION NUMBE . (THRU) I
H ; ; i
’ d 7 /
§ - 48 K i
~ >
- E (PAGES) (cdpE) !
- R /
7. (NASA CR OR TMX OR AD NUMBER) &ATEGCRY)

GPO PRICE $

CFSTI PRICE(S) $ ’ jZ)

Hard copy (HC)

Microfiche {(MF) 42‘5@ | -
INVESTIGATION OF THE
DIVERGENCE CHARACTERISTICS OF
T

DELTA-PLANFORM CANARD CONTROLS

by A. Gerald Rainey, Perry W. Hanson, and Dennis J. Martin

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. C. o APRIL 1966



NASA TR R-235

INVESTIGATION OF THE DIVERGENCE CHARACTERISTICS
OF DELTA-PLANFORM CANARD CONTROLS

By A. Gerald Rainey, Perry W. Hanson,
and Dennis J. Martin

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — Price $0.50



INVESTIGATION OF THE DIVERGENCE CHARACTERISTICS
OF DELTA-PLANFORM CANARD CONTROLS!

By A. Gerald Rainey, Perry W. Hanson,
and Dennis J. Martin
Langley Research Center

SUMMARY /045 o

The static aeroelastic divergence characteristics of a delta-planform model
of a canard control surface have been studied both analytically and experimen-
tally in the Mach number range from 0.6 to 3.0. The experiments indicated that
divergence occurred at a nearly constant value of dynamic pressure at Mach num-
bers up to 1.2. At higher Mach numbers somewhat higher values of dynamic pres-
sure were required to produce divergence. The analysis and the experiment indi-
cate that the camber stiffness of the control surface and the stiffness of the
control actuator are both important in divergence of surfaces of this type.

m 7

Canard-type surfaces have potential application as stability and control
devices for a wide range of aerospace vehicles. The increased usage of low-
aspect-ratio canard surfaces for stability and control of missiles, launch vehi-
cles, airplanes, target drones, and so forth, has led to considerable interest
in the aeroelastic characteristics of such surfaces. In several instances, mis-
sile failures have occurred which were believed to be due to static aeroelastic
divergence of surfaces of this type. In most cases, a relatively simple solu-
tion to the problem has been found such as stiffening the surface in the chord-
wise direction or altering the geometry of the control. Investigations of this
type are usually somewhat restrictive and the results may not be generally

INTRODUCTION

Divergence encountered by surfaces of this type differs somewhat from the
classical torsional divergence in that camber deformations seem to play a domi-
nant role. This new class of divergence problems which are associated with thin
low-aspect-ratio surfaces has received some analytical study (refs. 1 and 2).

In order to assess this problem area further, an investigation of the
effects of variations of stiffness and location of the pitch axis of this type
of control surface has been undertaken. Divergence measurements have been made
over the Mach number range from 0.6 to 3.0, and an analytical treatment of the
divergence of this type of control has been developed. The structure has been
treated as a beam with its span alined with the airstream. Two types of

lSu.persedes recently declassified NACA RM LS58EOT by A. Gerald Rainey,
Perry W. Hanson, and Dennis J. Martin, 1958.



aerodynamic forces are considered, one based on very-low-aspect-ratio theory
and the other based on piston theory. The experimental results are compared
with the results of this analysis.

SYMBOLS

Measurements for this investigation were taken in the U.S. Customary System
of Units. Equivalent values are indicated herein in the International System
(SI) in the interest of promoting use of this system in future NASA reports.
Conversion factors for the units used herein are presented in appendix A.

Aij slope influence coefficient for panel, pitch spring being considered
infinitely stiff (slope at position i due to unit load at posi-
tion J)

a speed of sound

a4 j slope influence coefficient for pitch spring, panel being considered
infinitely stiff

Bij slope influence coefficient for panel-spring combination, 8y + Aij

b model semichord measured parallel to root chord at three-quarte£
semispan

CB spring constant of pitch spring

c distance from intersection of leading edge and root chord to trailing
edge

d measured deflection of control surface at a point 27.1 percent of

root chord rearward of leading edge and at 50 percent of local span
outboard of root chord due to a unit load at that point with pitch
spring stiffness assumed infinite

E modulus of elasticity of panel

Ep modulus of elasticity of air

EM,e effective value of modulus of elasticity of material

EI panel bending stiffness with respect to pitch axis

h measured deflection of infinitely stiff control surface at a point

27.1 percent of root chord rearward of leading edge and at 50 per-
cent of local span outboard of root chord due to a unit load at
that point acting against pitch spring stiffness only

i, identifying integers in matrix notation




1
d +h

effective stiffness of panel-spring combination,

length of trailing edge
Mach number

bending moment

mass of air contained in cone for which base diameter is equal to
root chord and height is equal to span

effective mass of panel, Ke
o
mass of panel

integer

aerodynamic load

static pressure

dynamic pressure

one-half the distance from leading edge to root chord measured paral-
lel to pitch axis at chordwise station x

thickness of panel

stream velocity

component of stream velocity normal to control surface

chordwise distance measured from and perpendicular to pitch axis
(for analytical purposes, pitch axis is assumed perpendicular to

line bisecting angle formed by leading edge and root chord)

chordwise station where deflection is measured due to load at Xj

chordwise station where load is placed

distance of panel elastic axis from leading edge at root chord

vertical displacement
ratio of specific heats

angle between leading edge and free-stream flow

mp

mass ratio, Ty



P density of air

w circular natural frequency of vibration
if 1=
if 1 #3
[p] differentiating matrix
[ ] square matrix
{ } column matrix
Subscripts:
L refers to lower surface
U refers to upper surface
© refers to conditions far removed from control surface

Dots over symbols denote derivatives with respect to time.

APPARATUS AND TESTS

Description of Wind Tunnels

The tests were conducted in the Langley 2-foot transonic flutter tunnel
for the Mach number range from 0.6 to 1.2 and in the Langley 9- by 18-inch
supersonic flutter tunnel for the Mach number range from 1.64 to 3.0.

The Langley 2-foot transonic flutter tunnel is a slotted-throat single-
return wind tunnel equipped to use either air or Freon-12 as a test medium. °
The present tests were made with Freon-12. The tunnel is of the continuous-
operation type, powered by a motor-driven fan. Both test-section Mach number
and density are continuously controllable.

The Langley 9- by 18-inch supersonic flutter tunnel is a fixed-nozzle
blowdown~-type wind tunnel exhausting into a vacuum sphere. The nozzle config-
urations used in this investigation gave Mach numbers of 1.64, 2.0, 2.55,
and 3.0. At each Mach number the test-section density varies continuously to
a controlled maximum.




Description of Models

The models simulated a delta-planform canard all-movable control surface.
They were cut from 2024-T aluminum sheet stock, the thickness of a given model
being constant over the planform except for the beveled leading and trailing
edges. The geometry of the models and model-mount fairings is shown in fig-
ure 1. The portion of the mount fairings forward of the traillng edge repre-~
sents the contour of a vehicle body.

The masses and thicknesses of the control-surface models, identified by
numbers 1 to 9, are presented in table I. The method of mounting the models
for use in both the 9- by 18-inch supersonic flutter tunnel and the 2-foot
transonic flutter tunnel is shown in figures 2 and 3. The torque rod was con-
nected to the mount frame through a torsional spring. Several torsion springs
were used to cover a range of stiffnesses. Combinations of torsion springs and
control-surface thickness were selected to produce symmetrical and antisymmetri-
cal modes considered to be realistic for this type of control. These combina-
tions are hereinafter referred to as basic combinations or the basic configu-
ration. In addition, several modified combinations were used to increase the
scope of the investigation. It should be noted that although the physical
appearance of the model mounts was different, the model root conditions were
the same in both mounts.

A model mounted in each of the tunnels is shown in figures 4 and 5. Also
shown in figures 4 and 5 are the different mount fairings used in the two tun~
nels. The differences in model-mount fairings are also indicated in figure 1.

TABLE I

MASS AND THICKNESS OF MODELS

Mass Thickness
Model

slugs kg in. cm
1 0.000732 | 0.01068 | 0.016 | 0.0406
2 . 000928 .01355 .020 .0508
3 . 001446 .02111 .032 .0812
4 .001875 .02738 .0k0 .1016
5 .002371 .03461 .051 .1295
6 .002890 . 04220 .06k .1626
T . 003095 04520 .072 .1828
8 . 003650 .05%30 .080 .2033%
9 .003895 .05710 .091 2311
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Figure 1.- Geometry of models and mount fairings. (Dimensions are shown in inches and parenthetically in centimeters.)
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Figure 2.- Model mount used in the Langley 2-foot transonic flutter tunnel. (Scale shown is in inches.) L-57-1783.1
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(@) View looking toward root. L-57-1782.1
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(b) View looking toward tip. L-57-1781.1

Figure 3.- Model mount used in the Langley 9- by 18-inch supersonic flutter tunnel. (Scale shown is in inches.)




) ) ) L-57-1437.1
Figure 4.- Model mounted in Langley 9- by 18-inch supersonic flutter tunnel.
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L-57-1430.1
Figure 5.- Model mounted in Langley 2-foot transonic flutter tunnel.




The torsional stiffness h of the springs is presented in table IT, along
with the control-surface-panel stiffness d and combination panel-spring stiff-
ness Ke. The numbers of the control-surface model and the spring are used in

the model designations in table II; thus, model 3-2 is control-surface model 3
mounted on spring 2. The column headed 4 is the measured deflection of the
control surface at a point due to a unit Ioad at that point with the pitch
spring stiffness assumed infinite and the column headed h is the deflection
of an infinitely stiff control surface at a point due to a unit load at that
point acting against the pitch spring stiffness only. The point of reference is
a point 27.1 percent of the root chord rearward of the leading edge and 50 per-
cent of the local span outboard of the root chord. The effective stiffness Ke

is a measure of the total stiffness of the model and is defined as 1 Also

shown in table II are calculated divergence dynamic pressures obtained from an
analysis discussed subsequently.

TABLE II
STIFFNESS PROPERTIES OF MODELS AND SPRINGS WITH CALCULATED

DIVERGENCE DYNAMIC PRESSURE

Calculated
divergence gq
d h Ke (Low-aspect-ratio
Models theory)*
ft/1b cm/N ft/1b cm/N b/ft| N/em | 1b/sq £t | N/em?
Basic control-surface-—spring combinations
3-2 0.01950 | 0.13%60 | 0.03173 | 0.21730 | 19.51| 2.85 82.60 | 0.39
ko3 .00925 | 06340 | .01k17| .09710 | ko.70| 6.23 168.00 .80
6-5 L00242 | 01657 | .ook3hk | 02972 | 148.10 | 21.61 646.00 | 3.09
6-8 .002k2 | .01657| .00L75 | .01199 | 240.00 | 35.00 826.00 | 3.95
7-6 L0017 | .01172 ! .00308 | .02110 | 208.70 | 30.50 906.00 | k.33
7-9 .00L71 | .C1172! .001L1l7| .00802 | 347.80}50.80 | 1,190.00 | 5.70
5-4 L0048k | 03315 .0068L | .04685 | 85.7C | 12.50 349,00 1.§7
8-7 .00121 | .00829 | .00363 | .02487 {257.80 | 40.30 | 1,222.00 | 5.85
9-8 .0008%3 | .00579 | .00258 | .0L1767 | 388.00| 56.60 | 1,762.00 | 8.kk
Modifed control-surface—spring combinations

3-3 0.01950 | 0.13360 | 0.01417] 0.09710 { 29.70| L.34 103.00 | 0.49
3-10 .01950 | .13360 | .00067| .00459 | 49.58| 7.2k 141.00 .68
9-2 .00083 | .00579| .03173| .21730 | 30.68 | L4.L8 652.00 | 3.12
3-1 L01950 | .13360 | .25500 | 1.74700 3,64 .53 Li.70 .20
1-2 .15570 | L.06700 | .03173| .2173%0 534 .78 16.00 .08
2-2 07980 | 54700 .OZLT3| .2173%0 8.98| 1.7 28.60 L1b
4o .00925 | 06340 | 03173 .21730 1 24.L0| 3.56 129.00 .62
5-2 L0048k | .0%%15 | .03173| .2173%0 | 27.40{ 4.00 208.00 | 1.00

*Divergence q calculated using piston theory is approximately equal to
calculated using low-aspect-ratio theory multiplied by 0.906M.

divergence q




Test Procedure

Langley 9- by 18-inch supersonic flutter tunnel.- The models tested in the
Langley 9- by 18-inch supersonic flutter tunnel were all the basic configurae
tion; that is, the spring and control-surface combinations were such that the
elastic properties of an actual canard all-movable control were simulated, as
was the location of the pitch axis (0.62 root chord). Electrical resistance
wire strain gages were mounted at the root near the hinge line and the signal
was taken to a recording oscillograph which also recorded tunnel conditions.
Tn addition, high-speed motion-picture cameras recorded the behavior of the
model. The procedure for making all the runs was as follows: the models were
set at zero angle of attack and then the tunnel was evacuated to approximately
1 in. (2.54 cm) Hg absolute. A control valve upstream of the test section was
then opened and the density of the flow was allowed to increase at constant
Mach number until divergence occurred.

Langley 2-foot transonic flutter tunnel.- In addition to the basic config-
uration, several modified configurations were tested in the Langley 2-foot
transonic flutter tunnel. Effects of variation of the pitch-axis location and
of variations of spring and control-surface stiffnesses were investigated. In
order to obtain data at various Mach numbers, the following procedure was used.
With the tunnel set at a low density, the velocity was increased until the
desired Mach number was reached. With the velocity held approximately constant,
the test-section density was slowly increased until divergence occurred. The
dynamic pressure was then decreased rapidly by actuating a spoiler in the dif-
fuser section of the tunnel. The Mach number was then decreased to a point
well below the divergence condition. At this point the stagnation pressure was
increased by a small amount; the velocity was then slowly increased until diver-
gence occurred. This procedure was repeated for several small increments in
stagnation pressure. For the type of boundary found for these models, this pro-
cedure resulted in divergence points for several Mach numbers from the maximum
obtainable in the tunnel down to some arbitrary lower Mach number.

Data Reduction

Tt was necessary to test models of different stiffnesses in order to obtain
divergence data over the desired range of Mach number within the range of
dynamic pressure obtainable in the test facilities. This variation in stiffness
leads to the necessity of reducing the data obtained for the various models to
some form of dimensionless parameter which will provide a basis for comparison
of the test results at various Mach numbers. Such a parameter has been devel-
oped and discussed in appendix B. The parameter chosen is closely related to
the stiffness-altitude parameter which has proven useful in interpreting flutter
results. The divergence parameter differs from the flutter parameter in that
the frequency and mass have been replaced by a stiffness term in an attempt to
recognize the static characteristics of divergence.

This parameter is

oo’
£ o™
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where b 1s a reference semichord taken at the 7T5-percent-semispan station,
a 1is the speed of sound, and K, 1s the effective stiffness or the load

required for a unit deflection measured at an arbitrary point on the surface.
For all the models tested, b is 0.0926 foot (2.82 cm) and mpy 1is the mass of

air which can be contained in a cone whose base diameter is equal to the root
chord and whose height is equal to the exposed span of the control surface. The
volume of this cone is 0.0405 cubic foot (1147 cmd).

The results of the experiments are discussed subsequently, along with
results obtained from the following analysis.

ANALYSIS

This section is concerned with the development of divergence equations
applicable to the spring-mounted elastic control tested in the experimental
investigation. An influence~coefficient method of analysis is used in which
two methods are used for representing the aerodynamic forces, namely, low-aspect-
ratio theory (ref. 3) and piston theory (ref. 4).

Structural Representation

In order to represent structurally the surface in a manner that is readily
amenable to analysis, the sections of the surface were considered to be sheared
parallel to the pitch axis and the trailing edge was rotated about its midspan
point so that an equivalent symmetrical planform was obtained. The equivalent
planform is indicated in the following sketch:

In both the low-aspect-
ratio-theory and the piston-
theory approaches, the aerody-
namic loading is defined in
terms of the local streamwise
slopes and curvatures. The
expressions for aerodynamic
loading can be combined with the
slope influence coefficients of
the system to obtain an expres-
sion for the dynemic pressure at
divergence. A first step in the
development of the divergence
equations is the determination b —c
of the combined slope influence W—
coefficients of the spring- )
mounted elastic surface. The '
simple beam equation is applied J_

/1

———Y - -

11



in the stream direction to determine a slope influence-coefficient array. It
is assumed that the influence of spanwise deformations on the structural and
aerodynamic forces is small. The elastic influence coefficients of the surface
alone may be obtained by assuming that Cpg, the pitch-spring constant, is infi-

nitely stiff; that is, slope and deflection at the pitch axis are zero. Use
may then be made of the fundamental beam relation

El —= = m, (1)

For a concentrated load ij applied at a point at a distance X3 from the

pitch axis, equation (1) becomes
EI 9—25 = —<xj - )ij (2)
for
] < |x4]

Since the surfaces considered are of constant thickness, the section moment of
inertia I may be written as

b}
I-= %%EG%>— ) (3)

Equation (2) may be integrated with the section moment of inertia represented
by equaticn (5) to obtain the slope at a point x; due to a load at station Xj1

lEncPX(j i

<%;ZE>X1 B ﬁ Xi - (Xp >lOge )Cp)%j X (ll»)

where

n=1 0 <x3 < Xj
n=20 (Xj = O) 4 (5a)
n= -1 x, < X5 < O)
2
Appropriate boundary conditions are
d_z=gz)
<dx>xi <dx X3 <|xi| > |XJ|’ xiXy 2 O)

(5b)

<
0 (xixj = O>

(),

12




An elastic slope influence coefficient Aij may then be defined as

(dz)

dx X . X s

i _ l2nc Xi J 1

A.. = = —_— - — log —rnaees (6)
1] ij E1t? *p X ( Xp ey _ X1

*p

subject to the conditions of equations (5).

For the present analysis the control surface is divided into 10 sections
of equal iIncrements along x and the control points are located at the middle
of each section. The 10-point slope influence coefficient matrix [A] calcu-
lated from equation (6) and representing the control surfaces is presented in
appendix C.

The slope influence coefficient aij due to a spring in the pitch degree
of freedom is
o=
a3 G, (1)

The matrix [a] representing the influence coefficients for the pitch
springs is also presented in appendix C.

The combined slope influence coefficients due to the elastic control sur-
face and the spring restraint in the pitch degree of freedom are additive,

Bijy=Ayy+agy=[E] (8)

The matrix equation
{%XE} - X7} (9)

gives the slope {%% in the streamwise direction for any system of loads {é>.

If the aerodynamic loads can be expressed in terms of the dynamic pressurc and
slope, substitution of the aerodynamic loads into equation (9) results in the
divergence equations which may be iterated to obtain the critical dynamic pres-
sure. Two methods of representing the aerodynamic loads are used, namely, low-
aspect-ratio theory and piston theory. The following section presents the
development of the aerodynamic loads into a form that can be used in equa-
tion (9) to obtain the divergence equation.

Divergence Equations
Low-aspect-ratio theory.- The aerodynamic loads are first obtained from

very-low-aspect-ratio theory (ref. 3). This theory assumes that the flow field
within a planar strip perpendicular to the flow direction is two dimensional

15



and that the changes in the flow direction are small. The complete expression
for the aerodynamic load on a section of dimension 2s normal to the flow and
Ax  parallel to the flow may be written as

. 2
P = -ﬁp(A.x)s2 o+ 2v 32 4 v2 &2 | on(ax)pVs tan (2 + V dz (10)
dx ax2 dx

where 6 1is the angle at which the leading edge is inclined to the free stream.
The effects of the central body on the aercdynamic forces as given by low-
aspect-ratio theory are not known; however, they are assumed to be small. The
time derivatives for the divergence case vanish, and equation (10) when applied
over the entire control surface may be written in matrix notation as

{P} = —2n(Mx)q %2 %i-g-} + 2 tan e{s g—f(} (11)

If
85 = 1 (1 = 3)
i
! (12)
8y =0 (1 #3)
the matrix for the aerodynamic loads becomes
{P]—EK(AX) [8 52] 4%z 2tnel—§ s] dz (13)
- ERTREERA N B pwr-d 13%3) (&

A differentiating matrix [D:] may be determined so that

{%} - b { (14)

A sample matrix [D] for the 10-point analysis used in this paper 1s given in
appendix C. TIf the differentiating matrix [D] of equation (14) is used in
equation (15), the expression for the aerodynamic loads becomes

P = -EH(AX)Q[[Sijsjg] [p] + 2 tan e[aijsj]] {%x-z-] (15)

The square matrix premultiplying {%ﬁ} is a function of geometry only, and, if

it is denoted by [C], the aerodynamic loads are given by

1k




{r} - —2n(Ax)q[c][—-} (16)

dz
dx

If the aerodynamic loads given by equation (16) are substituted into the com-
bined slope influence equation (eq. (9)), the equation governing the slopes
under aerodynamic loadings is

e} - entematata fg] a7

Equation (17) expresses the conditions for which the aerodynamic forces are
equal to the structural restoring forces. Equation (17) is thus the divergence
equation and may be iterated to obtain the dominant root which yields the
dynamic pressure at divergence. The values of q thus obtained for each case

are given in table II. The product [B] [C] for stiff control surfaces and
weak pitch springs produced an ill-conditioned matrix which was divergent under
normal iteration procedures. Averaging successive iterations proved to be
adequate to force convergence to the dominant mode in the cases treated.

Piston theory.- A second method of representing the aerodynamic forces for
the supersonic case was also used and involved the use of piston theory
(ref. 4). Piston theory is an application of the "local" wave equation and may
be obtained from potential-flow theory if the Mach number is allowed to take on
large values. The pressure coefficient may be written as

2 b)
1 1
P - P, = Pyl §;+ZI—(§;)+7J{2(§—)+ (18)

00

The load on a section of the upper surface, which is 2s wide and Ax long,
becomes

fi w7t Ll 3y l/w\5 ]
Py = -2(Ax)(2s)q|.ﬁv+ \T + M 12—\5/ + .. ._| (19)

The surface is of constant thickness and the load on a section of the lower sur-
face is

2 3
- Jlw o oy My Oy +lfw
Py = -2(&)(25){ LR V) w Lt (V) v ] (20)
If dz/dx is equal to w/V, the total load Py - Py becomes
_ 1dz 3y + 1)(dz)5
- A Vo] A | (=) p)
p u(Ax)(es)qL4 2, ( ER)EY - (21)

15



Only the first term of equation (21) is used in the present analysis. The
system of equations representing the loads on the control surface is

{r} =-%(Ax)q[26138j:] ‘}—bz(} (22)

Equation (13) is the corresponding equation derived from low-aspect-ratio

A
L

theory. The square matrix premultiplying in equation (22) is also a

function of geometry only, and, if it is denoted by'A[c], the aerodynamic loads

[p} - -%(AX)Q[C]{%} (23)

Substituting the aerodynamic loads given by equation (23) into equation (9)
gives the divergence equation for the analysis based on piston theory

{‘}EZ = - Hex)a[E] [c] {%} (2h)

Equation (24) may be iterated to obtain the critical values of gq.
RESULTS AND DISCUSSION

The basic model configuration with springs which simulated representative
symmetric and antisymmetric stiffnesses of a canard control has been tested in
the two wind tunnels in the Mach number range from about M = 0.6 to M = 3.0.
Additional tests have been made in the transonic tunnel to study the effects of
stiffness of the control rotation springs and of the control surface and addi-
tional studies were made of the effects of location of the pitch axis.

General Characteristics of the Divergence Encountered

Classically, divergence has been treated as an aeroelastic phenomenon
associated with torsional deformations. This type of divergence has been
defined as a static instability of an airfoil in torsion which occurs when the
torsional rigidity of the structure is exceeded by aerodynamic twisting moments
(ref. 5). The type of divergence encountered in the present investigation
seems to fit this same definition except that the role of torsional deforma-
tions has been replaced by camber deformations superimposed on a rotation of
the control about its pitch axis. The type of motion involved is shown in fig-
ure 6 which is composed of enlargements from a high-speed motion picture. As
the deflections become large, it can be seen that the surface has large curva-
ture ahead of the pitch axis and a decided slope at the pitch axis. As a

16
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matter of interest, deflections were measured on several of the enlargements
and are compared with the calculated deflection shape in figure 7. The agree-
ment between the measured and calculated deflection shapes is good.

The type of motion involved in divergence of these models is very violent
in the sense that very large deflections are reached in a very short period of
time as indicated by the enlargements of the high-speed motion picture shown in
figure 6. At subsonic and transonic speeds, only a few of the models acquired
permanent set during divergence, presumably because of a stalling effect at
high angles of altack. At supersonic speeds, all the models were permanently
damaged in divergence. A representative selection of these damaged models is
shown in figure 8. Although the models did not always suffer damage at the
lower Mach numbers, the control deflections during divergence were probably
sufficiently large to cause very violent maneuvers of a vehicle and subsequent
structural damage.

1.0

Calculated
— — — Measured

Normalized deflection

Leading
edge

Higure 7.-  Comparison of calculated and measured deflection modes during divergence.
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Figure 8.- Typical damaged models after supersonic testing. L-57-1438

Basic Configuration

The data obtained for the basic configuration have been reduced to a non-
dimensional stiffness-altitude parameter which is discussed in appendix A. The
values of this parameter represent a stability boundary for static aeroelastic
divergence and are shown as a function of Mach number in figures 9 and 10. In
a figure of this type, constant-altitude operation of a given configuration
would be represented by a horizontal line at a value of the parameter deter=-
mined by the stiffness of the control and the altitude. Radial lines through
the origin would represent lines of constant dynamic pressure.

The tendency toward a decrease in slope of the boundary with increasing
Mach number indicates that somewhat higher dynamic pressures would be required
to produce divergence at higher Mach numbers than at lower Mach numbers.

The analysis of static aeroelastic divergence using very-low-aspect-ratio
aerodynamic theory yields a single value of dynamic pressure required to pro-
duce divergence regardless of the Mach number. If piston theory is used, the
analysis indicates that the dynamic pressure at divergence increases directly
with Mach number. The calculated results obtained from both types of aerody-
namic theory are shown in figures 9 and 10. In the Mach number range from
about 0.6 to 1.2 (where piston theory is not applicable), the agreement between
the experiment and calculations based on low-aspect-ratio theory is considered
to be excellent. At higher supersonic Mach numbers, the experimental results
fall about one-half the distance between the calculated results obtained for
the two types of aerodynamic theory. For clarity, the theoretical results are
emphasized by the bands shown in figures 9 and 10.

19




.50
ﬁ}’
45 —- - 4
G0 f———r ——f— e - l-
0
A5L— o b
Stable
30 - <&
b [Ke 55
aam,
20} et - e e —
Unstable
[} - _. S SV S
Ke Meas. Low-aspect-ratio Piston
Ib/7ft N/cm theory theory
2 195 285 O —_— —
4-3 427 .23 O
10
5-4 857 12.50 I\ X X
6-5 148.1 2l.61 A FAY JA'S
7-6 208.7 30.50 O & G
8-7 275.8 40.30 N o ag
05 — - R
] .5 10 15 20 2.5 30 35

Mach number
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Effects of Variations in Stiffness

In order to obtain data over the desired range of Mach number in the two
facilities, it was necessary to use models of varying stiffness. An impres-
sion of the effects of stiffness can be obtained by examining figures 9 and 10
and observing the degree to which a single curve can be fitted to the data for
models of various stiffness levels. The fitting of a single straight line to
the data implies that the dynamic pressure required for divergence is essen-
tially directly proportional to the stiffness. This seems to be true for cases
where the contributions of the control surface and the piteh spring to the total
stiffness remain in about the same proportion. When the relative contributions
of the two sources of stiffness are varied, this direct relationship between
dynamic pressure and stiffness cannot be expected to apply. This feature is
illustrated in figures 11 and 12, where the variation of the dynamic pressure
required for divergence with stiffness is shown for two methods of varying the
overall stiffness of the model. The first method (fig. 11) was to test the
same control surface mounted on different springs simulating a variation in con-
trol actuator stiffness. The second method (fig. 12) was to test control sur-
faces of varying stiffness mounted on the same spring.

The data agree very well with the calculated values and indicate that the
stiffness of the surface and the stiffness of the control actuator are both
important in determining the divergence characteristics of controls of this
type.

Effects of Variations of the Pitch Axis

It has long been recognized that the relative location of the aerodynamic
center of pressure and the elastic axis is important in aeroelastic problems.
In the present investigation it was believed that the camber deformations of
the surface were producing a more forward location of the center of pressure
than would be the case for a more rigid surface and, consequently, it was con-
sidered desirable to determine the effects of moving the elastic axis or the
pitch axis forward. TFor a model with a particular stiffness of both the surface
and the actuator, it was found that moving the pitch axis forward from 0.62¢c
to 0.58c increased the dynamic pressure at divergence by about 35 percent.
Similar tests with a much lower simulated actuator stiffness indicated about an
80-percent increase in dynamic pressure for the same change in axis location.
When the same control surface was tested with the axis at midchord and with zero
actuator stiffness (free floating), the dynamic pressure at divergence was
increased by about 20 percent and thus indicated the strong influence of the
location of the pitch axis.
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CONCLUSIONS

Divergence studies of a delta-planform all-movable canard control in the
Mach number range from 0.6 to 3.0 indicate the following conclusions:

1. At Mach numbers from 0.6 to 1.2, divergence occurs at an almost constant
value of dynamic pressure. At higher supersonic speeds up to a Mach numbcr of
3.0, divergence occurs at somewhat higher values of dynamic pressure.

2. Analytical results based on very-low-aspect-ratio aerodynamic theory
gave very good agreement with the experimental results in the Mach number range
from 0.6 to 1.2. At higher Mach numbers, the experimental results fell about
one-half the distance between two sets of calculated results based on low-
aspect-ratio theory and piston theory.

3. The analysis and the experiment indicate that the stiffness of the con-
trol surface and the stiffness of the control actuator are both important in
divergence of controls of this type.

Langley Research Center,
National Aeronsutics and Space Administration,
Langley Station, Hampton, Va., April 1k, 1958.
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APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units was adopted by the Eleventh General
Conference on Weights and Measures, Paris, October 1960.
Factors required for converting the U.S. Customary Units used herein to the
International System of Units (SI) are given in the following table:

(See ref. T7.)

Physical guantity U.S. Customary { Conversion ST Unit
Unit f?c3or
*

Force . « + + . . 1b 4, hh8 newtons (N)

in. 0.0254 nmeters (m)
Length . . . . .

ft 0.3048 meters (m)
Mass . « . . . . slugs 14.59 kilogram (kg)

1b/sq in. 6895 newtons/meter?® (N/m2)
Pressure . . .

1b/sq ft 47,88 newtons/meter? (N/m?)
Volume . . . . . cu ft 0.0283 meters (mD)

*Multiply value given in U.S. Customary Unit by conversion factor

to obtain equivalent value in ST unit.

Prefixes to indicate multiples of units are as follows:

Prefix Multiple
centi (c) 1072
kilo (k) 107
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APPENDIX B

DERIVATION OF A PARAMETER FOR PRESENTATION

OF EXPERIMENTAL DIVERGENCE DATA

In the study of dynemic aerocelastic phenomena or flutter, a convenient
grouping of parameters called the stiffness-altitude parameter has been very
useful in interpreting experimental flutter data obtained for a variety of
stiffnesses over a range of altitude and Mach number. This flutter parameter
consists of the product of a reduced frequency based on a representative chord,
natural frequency, and the speed of sound times the square root of a mass ratio
which is usually taken as the ratio of the mass of the surface to the mass of a
specified volume of air surrounding the surface. This flutter parameter can be

. bw
written as 'ET%L

If it is reasoned that static aeroelastic phenomena, in particular diver-
gence, do not depend on inertia forces, it seems logical that some other com-
bination of parameters might be more useful in interpreting divergence data.
If the divergence model can be represented by a concentrated mass which yields
the frequency  when attached to a spring with a spring constant Kg, the
flutter parameter might be redefined as

This new parameter would seem to be more appropriate for divergence studies
since it i1s not based on dynamic properties of the model but does include the
stiffness of the surface. However, the new parameter is somewhat unsatisfactory
because the significance of the individual parts of the parameter is not
obvious. As a matter of interest, the parameter can be reduced further to

piffe b B 1/
afflmy a pbel alfpl

where the product pb2l is proportional to the mass of a particular volume of
ailr surrounding the surface. The speed of sound can be eliminated by the rela-

’E
tionship a = Eﬁ where Ep 1is the modulus of elasticity of the medium. If
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APPENDIX B

it is recognized that the spring constant K, is proportional to an effective
value of the modulus of elasticity of the material EM,e’ the parameter becomes

b,/%e o C EM’e
a mA EA

where C 1is a constant for a given configuration depending only on the geometry
of the configuration. Thus, it is seen that the divergence parameter is, essen-
tially, the ratio of the model stiffness to the air stiffness which would seem
to be a very significant parameter.

The divergence boundary defined by the dimensionless stiffness-altitude
parameter can be converted easily to a boundary in terms of dynamic pressure
and Mach number for a particular configuration. At each point on the boundary
the dynamic pressure at divergence can be found from the following relation:

a baKe M2
TNTHENT R\
2 2p [t

p II].A

m
where Eé is the specified volume of the medium surrounding the surface.
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APPENDIX C

SAMPLE DIVERGENCE CALCULATICN

Presented in this appendix is a sample calculation of the dynamic pressure
at divergence based on low-aspect-ratio theory. The dimensions are given for
the equivalent control surface after the sections were sheared parallel to the
pitch axis and adjusted to obtain a symmetrical control surface. The numerical
example is given in the U.S. Customary Units. The control surface was repre-
sented by the following parameters:

E = 10 000 000 1b/sq in. = 6 890 000 N/cm?
¢ = 8.55 in. = 21.73 cm

1 =3.60 in. = 9.15 cm

X = 5.45 in. = 13.85 em

Ax = 0.855 in. = 2.173 cm

t = 0.032 in. = 0.0813 cm

1fcg = 0.0%45 radian/in-1b = 0.00305 radian/cm-N
6 = 30° = 0.524 radian

The slope-influence-coefficient matrix for all the control surfaces, cal-
culated from equation (6), is

3.937 2.320 1.32% 0.674 0.271 0.058 o} 0 0 0 1
3,554  2.320 1.3%23 674 .271 .058 0 0 0] o]
2,922 2.122 1.323 6Tk 271 .058 o] 0 o] 0
2.216 1.702 1.188 Ny .271 .058 0 0 0 0

[Aij] _12c f1.475  1.174 .873 572 271 .058 o] 0 0 0 (c1)

E1t) | .711 .580 450 .319 .189 .058 0 0 0 0

0 0 0 0 0 0 -.003 -.018 -.023 -.03k4

0 0 0 o] o] 0 -.003  -~.07T4 -.207 -.339

o] 0 0 0 0 0 -.003 -.07T4 -.261 -.500

| o 0 0 0 0 0 -.003 -.074 -.261 -.548

The slope-influence-coefficient matrix for the pitch degree of freedom is given
as

L322 2.473  1.625 0.776 -0.072 -0.921 -1.769 -2.618—

5.019 L4.170 3
5.019 4.170 3.322  2.473  1.625 776 -.072 -.921 -1.769 -2.618
5.019 4,170 3.222  2.473 1.625 LT76 -.072 -.921  -1.769 -2.618
5.019 4.170 3.322 2.473 1.625 776 -.072 -.921 -1.769 -2.618

o _ 1 15.019 k170 3.322 2,473 1.625 LTT76 -.072 -.921 -1.769 -2.618

1] T T |5.019 k170 3322 2473 1.625 776 -.072  -.921 -1.769 -2.618 (c2)

5.019 k.170  3.322  2.473  1.625 LT76 -.072 -.921 -1.769 -2.618
5.019 4.170 3%.322  2.473  1.625 776 -.072 -.921 -1.769 -~2.618
5.019 4.170 3.322  2.473  1.625 .T76 -.072 -.921 -1.769 -2.618
5.019 4L.170 3.322  2.473 1.625 T76 -.072 -.921 -1.769 -2.618
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APPENDIX C

The combined slope-influence-coefficient matrix Bjj = A3 +

adding equations (C1) and (C2):

] =

[0.513
480
4es
. 364
. 300
235
173
173
173

-173

o.

Bhk

L3k
.327
.291
.25
L19%
L1k
IR
L1k
L1y

0.
.229

229

.229
.217
.190
153
115
115
.115
115

0.1k44
L4k
L4k
L1l

-135

.056

0.0%2
.0%2
.0%2
.03%2
.0%2
.032
.027
.027
.027
.027

t
o
Q
(@]

N

F S IR Y S N N S S |
o
o
N

| IO A A R I SR B R B ]

.032
.032
.0%2
.0%2
.032
.0%2
.033
.038
.038
.038

aij

o
K
il
]

o

.063
.079
.08Y4
.048

{ IO R I R A R
(=)
| J N T RO H N B B |

.090
.090
.090
.090
.090
.090
-093
.116
133
138

is obtained by

(c3)

A differentiating matrix is obtained by applying the 5-point interpolation equa-
tions given on page 97 of reference 6:

1
[p]- 12(Ax)

The metrix. [?ijsij is obtained from the geometry of

.é5
5
-1

[oNoNoNoNeoNoNe

L

-8
10

1
leNoRoNoNeoNOR o

36 =16
-18 6
0 -8
8 0
-1 8
0 -1
0 0
0 0
0 0
0] 0]

expressed in inches as follows:

pord (3

and

lcococoococoooow!

QO OO0OO0OOOCOWO

[oNoNoNoNoNoNGRN NoRe)

oNeoNoNeRoNoEANONONG)

QOO OO0OVWVWOOOO

OQCOOHWO®H KW

l._l
QOO OHOOC OO

WHRFR®O®HOOO

|._l
QOOWOOOOLOO

=1 1
ANANONDOO DHOOOO

[eNoNeNeNe)

'_J
[eN oAV RoNe

= 1
OO XHOOOOO

)
W
[O)N

WHOOOOO OO

=
[@0]
1
n 1
N

-

the control and is

]

l_J
O~NOOOOOOOO

leNoNoNeoNoNoNoloNe RS,

'_J

(ck)

(c5)
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[aia‘sa‘]g B (%o_6>2

'CD [eNoNoNoNeoNoNO NN

The matrix [C]

and may be written

0. 084
-.021
. 020

[oNeNoNoNeRoNe/

0.038

.24ko
.159
.039

[eNoNoNoNeoRe)

-0.

[eNeoNoNoNoRoNoRoA N

oNoRoNoRoNeoNoRN NoNe]

APPENDIX C

QO OOOOWOOO0
@
COOOOHOOOO

}.—J
OO COo Da [oNoRoNoNe]

H
[loNeoNe] é%; OO OO0 O0O

N
\n

OCOMNOOOOOOO0

as obtained from equation (15) is

(c] = [%ijsjé][bj + 2 tan e[éijsi]

029

.129
.519

.312

.06k4

The product [B][bj

BIEI--

0.
L0357
.033
.029
.02k
.019
.01k
.0l
.01k
Noin

0ko

0.

o7l

.070
. 064
.055
.0k5
035
.026
.026
.026
.026

[oNoNeoNeNe]

0.013%
-.043
<159
727
-.516
.096

[eNeRoNe

-0.002
.007
-.020
312
.935
-.T70
.1%h

-0%9

.516

ke
.076

179

.2%0

.862

for use in equation

0.109
.110
.110
.100
.085
.067
.050
.050
.050
.050

0.095
.ok
.04
.093
.084
.067
.050
.050
.050
.050

.056

[oNoNoNe]

-.064
.T70
1.350
-1.4%2
1.379
-4.595

-u:138
10.33%8

N
(@] éz; ODO0COOOOO0

[eNoRoNoNo RO

-.134
1.432
4.065
-13.785

(17) is found to be

. 005
.005
.005
.005
.005
.002
.013%
.033
Ok
.oy

0.392
.392
.392
.392
.392
+ 393
402
.509
.566
.585

I
[ e i R RN TR R B B |

(@]

L7136
.73
.T136
.736
.736
.736
.760
975
.099
L141

0.952
.952
.952
.952
.952
.952
.983

1.274

1.446

1.50%

NOOOOOOOCOO

N
-]

-0.

-1.
-1.
-1.

.863
.865
.863
.863
.891

863|
865

1k2
272
310

(c6)

(c7)

(c8)

(c9)

The dominant root of this matrix is found by iteration and is equal to -0.327.
The normalized slope mode is given by

30



APPENDIX C

(1.000]
.989
.962
.888
dz {4 .761} (c10)
575

BT
275
.2Lo
-255_‘

-

The divergence dynamic pressure is gilven as

_ 1
2n(Ax) (-0.%27)

q = = 0.57 1b/sq in.= 82 1b/sq ft = 0.39% N/cm®
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